
Small-world phenomena and the statistics of linear polymers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 7749

(http://iopscience.iop.org/0305-4470/34/38/303)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OFPHYSICSPUBLISHING JOURNAL OF PHYSICSA: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen.34 (2001) 7749–7755 PII: S0305-4470(01)25723-0

Small-world phenomena and the statistics of linear
polymers

Parongama Sen1 and Bikas K Chakrabarti2

1 Department of Physics, University of Calcutta, 92 A P C Road, Calcutta 700009, India
2 Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Calcutta 700064, India

E-mail: paro@cucc.ernet.in and bikas@cmp.saha.ernet.in

Received 7 June 2001, in final form 15 August 2001
Published 14 September 2001
Online atstacks.iop.org/JPhysA/34/7749

Abstract
A regular lattice in which the sites can have long-rangeconnections at a distance
l with a probabiltyP(l) ∼ l−δ , in addition to the short-range nearest neighbour
connections, shows small-world behaviour for 0� δ < δc. In the most
appropriate physical example of such a system, namely, the linear polymer
network, the exponentδ is related to the exponents of the corresponding
n-vector model in then → 0 limit, and its value is less thanδc. Still, the
polymer networks do not show small-world behaviour. Here, we show that this
is due to a (small value) constraint on the number,q, of long-range connections
per monomer in the network. In the generalδ-q space, we obtain a phase
boundaryseparating regions with and without small-world behaviour, and show
that the polymer network falls marginally in the regular lattice region.

PACS numbers: 05.50.+q, 36.20.−r, 82.35.Lr

A small-world network (SWN) develops out of regular lattices having local connections with
additional long-range links or connections with a finite probability. It acquires the intriguing
property that while the local connectivity structure remains similar to the original underlying
lattice, the shortest path between any two lattice sites becomes similar to that of random graphs
[1, 2]. Specifically, if we take a regulard-dimensional lattice, then the neighbourhood of any
site of the lattice is given by the structure of the lattice and the shortest path between any
two sites of the lattice is of the order ofN1/d, whereN is the total number of sites in the
lattice. For a random graph, having random connections at all ranges, a similar shortest path
distance between any two points grows as lnN implying that the effective lattice dimensionality
d → ∞. The local structure of a random graph is completely amorphous. Watts and Strogatz
[1] in their model showed that starting from a regular lattice, when some of the nearest
neighbour bonds are replaced by long-range connections at random with a finite probabilityp,
the network shows an interesting feature: while the local connectivity remains practically the
same as in the regular lattice, the global shortest path distanceSN scales as lnN for a network
of sizeN for any non-vanishingp.

0305-4470/01/387749+07$30.00 © 2001 IOP Publishing Ltd Printed in the UK 7749

http://stacks.iop.org/ja/34/7749


7750 P Sen and B K Chakrabarti

l = 7

l = 9

(a) (b)

Figure 1. (a) Portion of a SAW network: the solid line represents the polymer or the street and the
dashed lines represent the nearest neighbour bridges. (b) A stretched chain equivalent: it contains
long-range connections with probability P (l).

This property of the SWN is of importance in various social communication networks,
such as internet links, disease spreading, etc. This also explains the amazingly low value of
the number of steps connecting any two members of such networks, e.g., the ‘six degrees of
separation’ observed in Milgram’s experiment and similar situations [3]. The minimal step
number connecting two members of these networks scales as ln N, rather than as N, the total
population of the network, while the local coordination structure remains almost the same.
Recently, the propagation of thermal correlations in such networks have also been studied;
particularly, the effect of such random long-range connections on the nearest neighbour
interacting Ising chain [4, 5]. With long-range interactions occurring with probability p, the
transition temperature becomes non-zero for p > pc for the Ising chain; pc = 0 according
to Barrat and Weigt [4] and pc �= 0 according to Gitterman [5]. Estimates of this transition
temperature and the nature of the correlations near the transition point have been investigated
in the above mentioned studies [4, 5].

In such SWN, the probability p of the long-range connections is simply the fraction of
such connections which are added randomly and are independent of the range. Recently, in
some extended SWN models, the probability P(l) that two points at a distance l along the chain
are connected has been taken to be dependent on l such that P(l) ∼ l−δ; δ = 0 corresponds to
the original model [1]. These studies indicate that for δ � δc the network effectively reduces
to the regular lattice, while for δ � δc it effectively becomes a SWN. There is apparently
some disgreement over the value of δc: according to [6] δc = 2, while in [7] δc is found to be
equal to d. Our study here is essentially for one-dimensional chains and we find that for the
corresponding unrestricted cases (defined later), δc = 2.

It appears that the most appropriate example of SWN in physics is the example of linear
polymers or the self-avoiding walk (SAW) model [8] . Here, the long-range connections over
the nearest neighbour monomer–monomer connections (called the ‘streets’ ) come from the
random folding (forming the local loops or the ‘bridges’ ) of the chain in the embedding dimen-
sion d. Figure 1 shows how long-range connections develop out of random folding in a SAW.
In fact, the structure of such a network has been studied intensively some time back [9–11].
Here, of course, the probability P of a connection at a (long) range l is given by the SAW
statistics: P(l) = GSAL

l /GSAW
l , where GSAW

l = µllγ−1 is the number of SAWs of length l and
GSAL

l = µll−2+α is the number of loops of length l [8]. Here µ is the connectivity coefficient
of the SAW on the embedding lattice and γ and α are, respectively, the susceptibility and
specific heat exponent of the equivalent n-vector model in the limit n → 0. Hence

P(l) ∼ l−δ (1)

where δ = 1 + γ − α. Using the approximate Flory formula ν = 3/(2 + d) for the correlation
length exponent and γ � 1, we get δ � dν = 3d/(2 + d). Hence δ < 2 for d = 2 and δ = 2
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for d = 4. In fact, with the best estimates of α and γ [8], one would also get δ < 2 for d � 3
and δ = 2 for d = 4. The average number, q, of such additional long-range connections per
site can also be estimated easily [8]; e.g. q = (z − 1) − µ, where z is the lattice coordination
number. This is because out of the z − 1 options left for the SAW to grow for the next step,
on an average µ options are chosen, the rest being visited earlier due to random folding of
the chain. With µ � 2.638, 4.151 and 4.686, one gets q � 0.36, 0.85 and 0.31 in square,
triangular and simple cubic lattices, respectively.

The above comparison and the observations [10, 11] on the SAW networks indicate that
the requirement P(l) ∼ l−δ with δ < 2 for d < 4 for small-world effects is not sufficient as the
small-world phenomena is certainly not observed in such SAW networks. In particular, it was
found that the shortest path length SN in a SAW network of N steps grows only linearly in N
for any finite-range interactions or bridges [11]. The SAW network therefore always remains
a linear one, and no small-world effect (SN ∼ ln N) or, for that matter, no extra dimensional
effect (SN ∼ Nx, x < 1) can be seen. Of course, the structures of the linear polymer network
and the SWN are inherently different, although the effective probability of connections in both
cases are given by the same power law (1). In SAW network, there is a structural restriction
on the total number of neighbours: at any point along the SAW chain, the total number of
connections q + 2 (as there are q long-range connections and two short-range connections for
each site) cannot exceed the coordination number of the underlying lattice. In SWN, however,
no such restriction exists (theoretically, here q can go upto N − 3 at each site for δ = 0). In
the SAW network, there also exists a correlation between the bridges. Such correlations are
absent in SWN (see e.g. in figure 1, two long connections lie very close; such configurations
are more likely in a SAW than in a general SWN).

Here we explore the differences that emerge from the constraint on the total number
of long-range connections in SAWs to find whether it is responsible for the non-SWN-like
behaviour of the SAW networks. Precisely, we investigate the crossover from small-world
behaviour to regular lattice behaviour indicated by the crossover in the behaviour of N (from
SN ∼ ln N to SN ∼ N).

For a fixed finite average number, q, of long-range connections (per site) in the SWN, we
vary δ to obtain δc(q) at which the SN behaviour changes. We then vary q in the range 0 < q < 2,
which corresponds to the real physical situation of SAWs in a square lattice. Note that for the
infinite chain, the probability in (1) is easily normalizable for any δ greater than unity.

In the SAW, the values of δ and q are independent. While treating both δ and q as
independent quantities in the model where the probability of a long-range connection of
length l varies as l−δ , it should be mentioned that strictly speaking the total number of long-
range connections qN depends on the value of δ. For example, for q ∼ N , one does not have
a choice for the value of δ as large values of δ will not be allowed in this case. Therefore,
when q is taken to be independent of δ, the range of both parameters get restricted. We find
that taking 0 < q < 2 is safe for values of δ � 2.5 in the sense that the desired scaling of the
bond distributions is intact.

We first generate a linear chain of length N. We then put additional long-range interactions
(bridges) following the probability distribution (1), with the restriction that the total number of
such connections is qN. We then use a greedy algorithm (see e.g. [12]) to find out the shortest
path through the streets and bridges and count the number of steps SN connecting the endpoints
of the SAW network.

In the unrestricted case (large q), we find that the (phase) transition from logarithmic to
linear scaling is recovered at δ � 2. This agrees with the result of [6]. For the finite N values
considered here (N � 10 000), at low values of δ (<1.4), the logarithmic scaling is clearly
observed (figure 2). However, for the intermediate values of δ (1.4 < δ < 2), the variation
is apparently power law like. We believe that this is only an effective behaviour and the
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logarithmic behaviour will follow as N → ∞. The justification is a posteriori, which can be
seen from the results for the constrained cases to be discussed later.

The constraint that the total number of long-range bonds for the whole chain is qN is a
global one. It may also be demanded that these bonds are distributed such that each site is
not allowed to have more than a fixed number of long-range bonds; this is a local constraint.
In a SAW embedded in a square lattice, there is a local constraint as individual sites cannot
have more than two long-range neighbours. We have studied both the locally and the globally
conserved cases; in the former the number of maximum long-range bonds at every site is

Figure 2. The behaviour of the shortest path length SN over N steps along the chain. The curves
are drawn for higher to lower values of δ from top to bottom: (a) q = 0.01; δ = 1.6, 1.5, 1.4,
1.2 and 1.0. The curves become linear for δ = 1.5 and above. (b) q = 0.02; δ = 1.7, 1.6, 1.5,
1.4, 1.2 and 1.0. The curves are linear above δ = 1.6. (c) q = 0.2; δ = 2.0, 1.95, 1.9, 1.8, 1.7
and 1.6. Linear behaviour is observed above δ = 1.90. (d) q = 0.5; δ = 1.8, 1.9, 1.95, 2.0 and
2.1. Linearity appears above δ = 2.0. In (c) and (d) where larger chains (N = 10 000) have been
considered, the change from the apparent power law to the actual logarithmic behaviour below δc
is clearly observed. The logarithmic behaviour at δ < δc can be observed at smaller values of N as
q increases.
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Figure 2. (Continued)

kept equal to 2 in analogy with the SAW (on a sqaure lattice), keeping the total number of
long-range connection equal to qN at the same time. However, the results with local and
non-local conservation are observed to be the same as far as the scaling of the shortest path is
concerned. The total path length in the locally restricted case is smaller because connections
which are redundant in the globally restricted case are to some extent lesser in number.

The variation of the shortest path with the path length for a given q and various δ values
shows that when extrapolated for large N, there are only two kinds of behaviour: logarithmic
and linear. The linear behaviour is obtained for δ > δc(q). The logarithmic behaviour is quite
apparent for small δ. For intermediate values of δ < δc(q), apparently there is an effective
power law behaviour SN ∼ Nx ; but we find that with increasing N, x decreases and one finally
obtains the logarithmic behaviour. On the other hand, for δ � δc, x is observed to remain
practically near unity. This observation may require really large values of N (e.g. N < 10 000
for q < 0.1). The transition boundary is difficult to estimate accurately—a problem
encountered in many SWNs [6]. At small values of q, we find that the shortest path becomes
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Figure 3. The regions corresponding to the different behaviour of SN in the δ-q plane. The dashed
line is a guide to the eye separating the small-world region from the linear region. At low values
of q, there is no small-world-like phenomena even though δ is less than 2.0. The values of q and δ

for linear polymers on the square, triangular and cubic lattices are shown by different symbols.

linear at a value δc(q) < 2. As q is increased, δc(q) increases, and finally δc(q) approaches a
value 2.0 as q becomes large (see figure 3).

In summary, our generalized model in which both δ and q are treated independently shows
that the transition from small-world to the regular lattice behaviour occurs across a phase
boundary δc(q). Extensive earlier investigations on SAW networks had established [10, 11]
that they do not show any small-world behaviour. In view of the recent studies [6, 7] on
models having long-range connections with probability distribution (1), and the observation
that they show small-world behaviour for δ < 2, together with the fact that δ is indeed less
than 2 for SAWs, an apparent contradiction arises. We resolve this here by studying the phase
diagram of a generalized model having long-range connection probability distribution (1)
and a restricted average number, q (per site), of such additional long-range connections. We
show that a crossover from small-world to regular lattice behaviour occurs as one crosses
the phase boundary given by δc(q) (δc → 2 for large q). The points (q, δ) corresponding to the
square, triangular and cubic lattices in figure 3 show that linear polymers on these lattices lie
marginally in the regular lattice region. We claim that the small value of q (<1) for linear
polymers makes it fall in the regular lattice region in the phase diagram, and excludes the
possibility of its small-world behaviour. As mentioned earlier, we have not taken into account
the various correlations developing in the SAW, and thus the q values in SAW, and the network
studied in the present paper may not be quantitatively identical. Second, the values of q and δ

shown in figure 3 for the different lattices are theoretical estimates only and therefore these
points may actually lie deeper in the regular lattice region. Hence we believe that the important
result δc(q) < 2 for small values of q is responsible for the non-SWN-like behaviour in SAW.
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